8 Axel Carlier

Outlining Objects for Interactive Segmentation on Touch Devices

user study demo (online) mm17-otis. pizenberg. fr

Emmanuel Faure Servillat

github.com/mpizenberg/otis

Introduction

There is a need for training datasets to support recent advances in machine learning for segmentation [1, 2, 7]

- -> Segmentation datasets are tedious to create with traditional interactions
- -> We propose to use outlining on touch devices

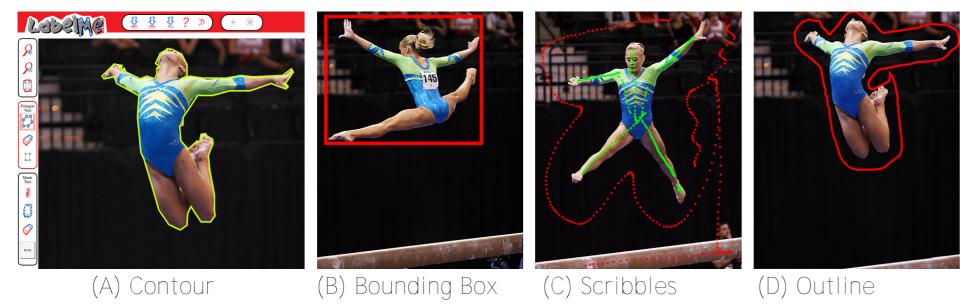


Figure 1: Different approaches for the task of interactive segmentation. Images are from the iCoseg dataset [3].

- Twenty users (10 male / 10 female)
- * Three tested interactions (bounding box, outline, scribbles)
- * 11 images per interaction (from iCoseg dataset [3])
- * Regular 8" android touch tablet
- -> source code available at github.com/mpizenberg/otis
- -> online demo at mm17-otis. pizenberg. fr

Method	Bounding box	Outline	Scribble	
Ease	2.1 ± 0.62	2.65 ± 0.74	2.1 ± 0.61	
Time	2.35 ± 0.69	2.5 ± 0.67	2.6 ± 0.70	
Rank	1.95 ± 0.43	1.90 ± 0.32	2.15 ± 0.37	

Table 1: Results of the questionnaire with a 95% confidence intervals. "Ease" and "Time" are measured on a scale from 1 (better) to 7.

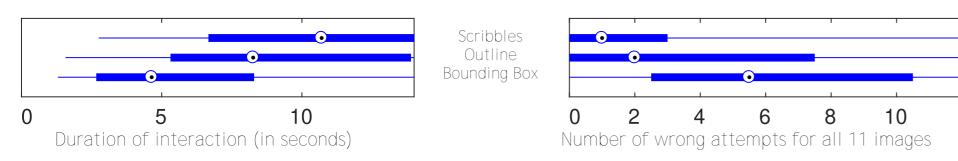


Figure 3: Measures of duration and errors for each interaction.

Figure 4: Evaluation of the quality of the participants annotations.

Best segmentation results (Table 2) obtained with: Outline interaction + inferred foreground + superpixels enhancement

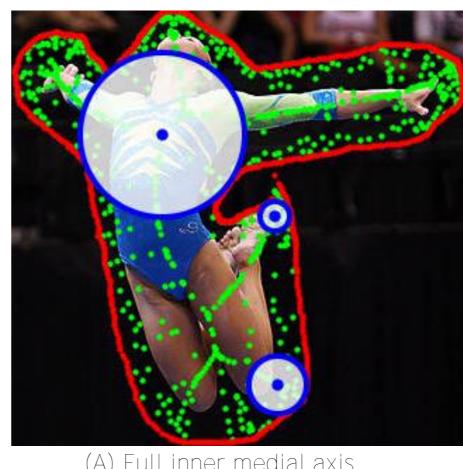

Method	Scrib.	B. Box	Outl.	Outl. + er.	Outl. + BMA
Mean Jaccard	0.79	0.82	0.86	0.88	0.89

Table 2: Mean Jaccard index obtained on all images for all users, for each interaction.

Outlining Interaction

GrabCut [4] alteration with initial foreground inferred using:

- * morphologic erosion
- * shape skeleton [5] (Fig. 2)
- -> enhanced by superpixels [6]

(A) Full inner medial axis

(B) Filtered medial axis

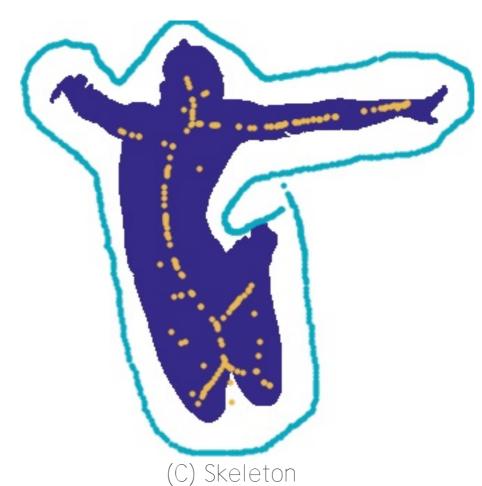


Figure 2: Inferring an initial foreground using the Blum medial axis [5], refined thanks to mean-shift superpixels [6].

Outlining is a simple and natural interaction on touch devices. Simplicity + swiftness + accuracy -> good candidate for datasets creation.

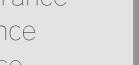



Figure 5: Some segmentation results using bounding box and outline interactions.

References

- [1] J. Long et al. CVPR 2015. Fully convolutional networks for semantic segmentation.
- [2] Mark Everingham et al. IJCV 2010. The pascal visual object classes (voc) challenge.
- [3] D. Batra et al. CVPR 2010. iCoseg: Interactive co-segmentation with intelligent scribble guidance.
- [4] C. Rother et al. ACM SIG 2004. "GrabCut": Interactive Foreground Extraction Using Iterated Graph Cuts.
- [5] Harry Blum et al. Pattern recognition (1978). Shape description using weighted symmetric axis features. [6] Dorin Comaniciu et al. PAMI 2002. Mean shift: A robust approach toward feature space analysis.
- [7] Bryan C Russell et al. IJCV 2008. LabelMe: a database and web-based tool for image annotation.

