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ABSTRACT
Interactive segmentation consists in building a pixel-wise partition
of an image, into foreground and background regions, with the
help of user inputs. Most state-of-the-art algorithms use scribble-
based interactions to build foreground and background models,
and very few of these work focus on the usability of the scribbling
interaction. In this paper we study the outlining interaction, which
is very intuitive to non-expert users on touch devices.We present an
algorithm, built upon the existing GrabCut algorithm, which infers
both foreground and background models out of a single outline.
We conducted a user study on 20 participants to demonstrate the
usability of this interaction, and its performance for the task of
interactive segmentation.
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1 INTRODUCTION
The number of pictures that are captured, stored and shared online
is growing everyday. In march 2017, Facebook reported that 300
millions pictures are uploaded each day on their website. These
pictures are increasingly used by companies, or even by individ-
ual users, enabling new applications trying to improve everyday
life. Object segmentation constitutes an important step towards
automatic image understanding which is key to those smart appli-
cations.

Object segmentation in an image remains a challenging task.
This process of assigning a label to each pixel is very sensitive
to the classical difficulties encountered in computer vision: light-
ning conditions, occlusions, etc. Recent advances in deep learning
have enabled researchers to obtain state-of-the-art results [14] by
training on the PASCAL segmentation dataset [8]. Some other
techniques learn to infer a pixel-wise segmentation out of weak an-
notations, i.e. bounding boxes around objects [18]. These methods
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are very promising but need huge amount of human labeled sam-
ples in order to train the deep neural network. Recent approaches
have tried to overcome this issue, introducing active learning to
train deep neural networks using a limited amount of selected sam-
ples [13], on the problem of image classification, but none of these
methods have yet been applied on semantic segmentation.

Because automatic segmentation is still in many cases out of
algorithms’ reach, researchers have introduced the concept of inter-
active segmentation. This problem has often been approached with
a task-driven point of view: what type of interaction may bring the
necessary information to significantly help an algorithm achieve
an acceptable segmentation?

Figure 1: A user outlining an object on a touch device, and
the resulting segmentationmask obtainedwith ourmethod.

The users providing the interactions are always supposed to have
a fair understanding of what segmentation is. This assumption is
problematic, especially when putting into perspective the extraordi-
nary amount of images to be annotated. That is why, in this paper,
our target population is composed of non-expert users who are
not knowledgeable about image processing and segmentation. As a
consequence most of the existing work, which rely on foreground
and background scribbles and require a high cognitive load from
the users, are not suitable to our problem.

Instead, we propose to use an intuitive interaction, outlining (see
Figure 1), that can be performed quickly and lead to good segmenta-
tion results while keeping users from entering a process of iterative
segmentation refinement. This outlining interaction is particularly
well suited for touch devices, which is appropriate considering the
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growing usage of tablets and smartphones compared to computers.
All these properties make the outlining interaction very interest-
ing for crowdsourcing segmentation annotations on thousands of
images, with non-expert users.

We present two main contributions in this work: first, a modifi-
cation of the GrabCut algorithm that takes as input an outlining
interaction, instead of a bounding box. We take advantage of the
free-form shape drawn by the users to extract information about
foreground (using the Blum Medial Axis computation) out of a
background annotation (the outline). The second contribution of
this work is the usability comparison of various interactions that
are used in interactive segmentation. We argue that the outline of-
fers the advantage of being a quick, easy-to-understand and usable
interaction while providing a high amount of supervision to obtain
a good segmentation.

The rest of the paper is organized as follows: we first review the
related work in Section 2, we then explain our method to compute
segmentation masks out of outlining interactions in Section 3. Fi-
nally we present our experiments and the results we find that prove
our simple interaction can lead to a good quality segmentation in
Section 4.

2 RELATEDWORK
2.1 Existing interactions for user-assisted

segmentation
Many interactions have been explored in the literature to provide
users with a way to bring semantic information to help a segmen-
tation algorithm. We review the interactions in this paragraph and
present briefly the algorithms that are attached to them.

The most intuitive methods are the ones that require the user
to manually designate the contours of the object. The LabelMe
tool [20] (see Figure 2) is the most famous example of such an in-
terface. The web-based interface developed by the authors allows
users to draw a polygon around an object. The segmentation ob-
tained with this technique is not necessarily precise at the pixel
level, but is sufficient in many cases and has the advantage of being
easy for users. In a variant of this technique called the Intelligent
Scissors [16], the users click points on the contour of the object and
a dynamic programming algorithm searches the optimal path that
ties those points. There exists another variation of contour drawing
called Soft Scissors [22]. One has to follow the contour using a
soft constrained, size-adaptable thick contour brush, requiring less
precision than exact polygon contour drawing.

A second possibility for interactive segmentation has been pro-
posed by Rother et al. [19]. The user is only required to draw a
bounding box around the object (see Figure 3), which is used to
learn a background model. The foreground is then obtained using
iterative graph-cut and alpha matting. This method works very
well for object that distinctly emerge from a repetitive background.
However in the case of complex scenes, the authors allow users to
perform an additional refining step based on scribbles.

Scribbles form another category of interactions for segmentation,
and are undoubtedly the most widely used (see Figure 3). Users can
typically draw foreground and background scribbles on the image,
and receive a feedback on the current state of the resulting segmen-
tation mask. Boykov and Jolly [3] use this input to build a trimap,

Figure 2: Visualization of an image annotated with the La-
belMe tool [20]

Figure 3: Example bounding box and scribbles interactions.
In the left image, a user drew a bounding box around the
gymnast. In the right image, a user drew green foreground
scribbles on the gymnast and red background scribbles out-
side.

i.e. a partition of the image into hardly constrained foreground
and background regions, and a softly constrained in-between re-
gion. They run a graph-cut algorithm to find the optimal object
boundary on the softly constrained region. McGuinness and OâĂŹ-
Connor [15] describe how to use scribbles to segment an image
using a Binary Partition Tree (BPT) [21]. The BPT is a hierarchy
of image segments that can be used to propagate the foreground
and background inputs between similar regions. Scribbles have
also been used in the context of image co-segmentation [1], to
provide foreground and background information across a set of
images depicting the same object. As an alternative to scribbles,
single foreground and background points have been used as input
to select the best masks among a set of object candidates [4].

The mouse is used in most of these work as interaction device,
which probably explains why outlines are rarely studied in the
literature. Outlines are indeed tedious to perform with a mouse.
However, most of the literature algorithms can take outlines as an
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input; in our work we choose to use GrabCut to obtain a segmenta-
tion out of the outlines.

2.2 Interactive segmentation for non-expert
users

Although many work have studied how to incorporate human in-
teractions into segmentation algorithms, there are only very few
authors who studied interactive segmentation with a special focus
on the interaction matter. In particular, the distinction between
experts and non-expert users has rarely been made when studying
the performance of interactive segmentation algorithms. Consider-
ing the tremendous number of ground truth masks needed to train
deep learning algorithms to segment images, the human annota-
tions necessarily have to be provided by non-expert users. Some
experiments on crowdsourced segmentation [5] clearly show that
non-expert users can misunderstand a simple segmentation HIT
(Human Intelligence Task), mistake foreground and background
colors, misunderstand the segmentation feedback, etc.

As a matter of fact, most of the crowdsourcing efforts in inter-
active segmentation have been performed with a LabelMe type
of interface. In addition to the actual LabelMe project, some work
on medical imaging have crowdsourced segmentation masks by
asking users to draw a polygon around hip joints [6], muscle and
melanoma cells [9], and nuclei [10].

However, those work do not specifically aim at the usability
of their interfaces. Recent works by Korinke et al. [11, 12] give
insights on the preferred user interactions for interactive image
segmentation on mobile devices. Dividing the process into two
steps, initialization and refinement, seems to be the preferred input
method. The initial step can be either bounding box drawing or a
simple outline.

Our work is largely inspired by these findings; since we target
non-expert users, we want to provide the most natural interaction
and choose outlining for our interactive segmentation algorithm.

3 OUTLINING OBJECTS FOR INTERACTIVE
SEGMENTATION

In this section we explain why we use outlining annotations, and
our method to compute segmentation masks out of outlining inter-
actions.

As stated in the previous section, most of prior crowdsourcing
campaigns in image segmentation have asked users to draw a poly-
gon around the object. This interaction has some merit in terms
of usability: it is very straightforward to understand, and does not
require iterative refinement from the user. In addition, the user does
not have to evaluate the quality of the produced segmentation mask
to know when to stop interacting. When the polygon is drawn, the
segmentation is over.

However, we have two main concerns with this interaction. First,
it is tedious and time consuming. It requires users’ full attention, in
order to precisely click on the object boundary. It also requires users
to implicitly determine the number of edges of the polygon they
should draw. A second limitation of this interaction is the quality of
the segmentation mask obtained. Shape details and curved bound-
aries can only be approximated by a polygon, and their quality is

correlated with the time the human annotator is willing to spend
annotating.

Outlining an object has the same merits than drawing a polygo-
nal shape around the object: the task is easily defined, and it is easy
for a user to assess the quality of an outline. It also adresses the
first limitation of the polygons: since it requires less precision in
following the object boundaries, it is less tedious and time consum-
ing. It has nevertheless an important drawback: it does not provide
an accurate segmentation.

In order to address this problem, we choose to rely on the popular
Grabcut algorithm [19]. The original GrabCut takes a bounding
box as an input. It considers every pixel outside of the bounding
box as fixed background, and aims at separating foreground from
background inside the bounding box. To this end, a background
model is estimated from the fixed background, and a foreground
model is estimated from the pixels inside the bounding box. The
likelihood of each pixel inside the bounding box to be foreground
or background is then estimated, and graph-cut is applied to obtain
a temporary segmentation mask. This mask is then used to update
the foreground and background models, and the process is iterated
until convergence.

In our implementation, we slightly alter the GrabCut algorithm
to take into account a major difference between outlines and bound-
ing boxes: we can make stronger assumptions on the foreground
positions from an outline than from a bounding box, by looking
at the general shape of the outline. We restrict the initial fore-
ground model computation to the pixels that are most likely to be
foreground, which decreases the number of iterations needed for
convergence and improves the segmentation quality.

In the rest of the section, we explain two different methods to
infer foreground out of the ouline shape: the first method consists
in eroding the outline, and the second is based on the Blum medial
axis computation.We then post-process the foreground pixels using
superpixels.

3.1 Outline erosion
The simplest method to obtain points that are likely to be fore-
ground from an outline is to apply morphological erosion of a mask
representing the inside points of the outline. We use a disk as a
structuring element for the erosion, and the only parameter of this
method is the radius of the disk.

In our implementation, the disk radius is specific to each user
and computed by studying the outline performed by the user on
a Gold Standard image. We compute the meanmd and standard
deviation sd of the distance d from each outline point to the ground
truth mask. Assuming the user consistently outlines all images,
i.e. the mean distance of the user outline to an object is more or
less constant across all images, a disk radius equal tomd + 2 · sd
should produce an eroded outline that is almost certainly completely
foreground.

An example of this process can be visualized on Figure 4a. The
eroded outline (yellow) is almost entirely contained in the ground
truth mask (dark blue).
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(a) Erosion of outline (b) Skeleton of outline

(c) Erosion of outline extended
with superpixels

(d) Skeleton of outline extended
with superpixels

Figure 4: Different foreground inferring methods from a
user outline. The ground truthmask is in dark blue. Theuser
outline is in cyan. The inferred foreground is in yellow.

3.2 Blum medial axis algorithm
In shape analysis and model animation, the Blum medial axis trans-
form [2] is one of the most popular tools. The Blum medial axis of
a shape is composed of the centers of the circles that are tangent
to the shape in at least two points. It is especially appropriate to
compute skeletons, composed of the medial axis points inside the
shape.

Figure 5: Skeleton (in green) computed using the Blum me-
dial axis algorithm from an outline (in red). Few exam-
ple disks are shown in blue. In the image on the left, all
disks centers (green points) are kept, generating a very noisy
skeleton. In the image on the right the skeleton is pruned,
by filtering out centers of small disks.

One of the problems of the medial axis algorithm is its stability
when the shape frontier is noisy. It tends to create a high number
of branches (see Figure 5), which deteriorates the simplicity of the
skeleton, and incidentally the comprehension of the shape. In our
case, this is rather an advantage. Indeed more ramifications lead
to a higher number of points inside the shape for our foreground
scribbles. However, we need to filter the inside points, since those
close to the outline have a high probability of being outside of the
object to segment. Radius of the inside circles of medial axis points
constitute a good filter option, because the medial axis points with
the smaller radius are typically close to the outline and appear as a
consequence of the outline noise. In our implementation, we choose
to keep only centers with a radius higher than half the larger radius.
Figure 4b depicts a ground truth mask in dark blue, a user outline
in cyan and the filtered medial axis points in yellow. Most of the
yellow points fall inside the ground truth mask, thus making it a
good starting point to learn the foreground model.

3.3 Enhancing foreground with superpixels
These two methods, Blum medial axis and outline erosion, allow to
select foreground points that make a valuable input to the GrabCut
algorithm. However, we add a post-processing step to (i) extend
this foreground information and (ii) filter as much false foreground
points as possible.

To do so, we compute a superpixels segmentation of the image,
i.e. an oversegmentation that groups neighbouring pixels with sim-
ilar colorimetric properties. We (i) extend the foreground labels
from pixels to the superpixels they belong to. This considerably
increases the surface of the foreground region. In addition, we (ii)
handle conflicting superpixels, which contain both pixels denoted
as foreground and a piece of the outline, by removing them from
the foreground mask. An example of the result can be seen on Fig-
ure 4c and Figure 4d. Note that the errors arising from the first step
(between the knees in Figure 4a and Figure 4b) have successfully
been removed in the post-processed inferred foreground mask.

We choose to use the Mean-Shift superpixels [7] because no com-
pacity constraint is used in their computation. As a consequence, a
superpixel can cover a large area (especially in the case of similar
background regions, such as an homogeneous sky) and will more
likely correct wrongly inferred foreground points.

4 EXPERIMENTS
In this section we describe the setup of our experiments and analyze
the outcome of the study.

4.1 Experimental setup
Interactions Since the purpose of the study is interactive segmen-
tation on touch devices, we choose to compare only three annota-
tions: outlines, scribbles, and bounding boxes. We do not include
polygon drawing because it is clearly not adapted to a touch device.
Indeed, fingers are too big to precisely touch the boundary of an
object, they would hide the area where the user would try to place
the vertex on.

The interfaces are kept as simple as possible. The user is shown
an image and has to provide a valid input to be allowed to move on
to the next image.
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Figure 6: Several screenshots of the bounding box interface
during training phase (left), and during the study (right).

The bounding box interface allows the user to draw a rectangle
over the image using a touch and drag interaction. If the user is
not satisfied with their previous attempt, they can start over, which
will replace the former rectangle with a new one. The user can
only move on to the next image when the current rectangle is of
sufficient size (we discard rectangles that are too small to avoid
common mistouch issues).

Figure 7: Several screenshots of the outlining interface dur-
ing training phase (left), and during the study (right).

The outlining interface is very similar to the bounding box in-
terface. The user can draw the outline using a touch and drag
interaction; the system automatically draws the closing segment
between the ending and starting points when the user releases their
finger. The user can also start over if not satisfied with the current
outline. The system allows the user to move on to the next image if
the outline is of sufficient area. In addition, for the training image
only, the system checks the absence of loops in the outline path (see
Figure 7), for they may reveal incorrect usage. This loop detection
feature is deactivated for the other images to limit its impact on
the interaction and user frustration.

The scribbling interface displays three buttons: one to select the
foreground scribbles, which are drawn in green, one to select the
background scribbles, which are drawn in red, and one to remove
the last drawn scribble. Users are required to provide a certain
scribble length to be allowed to move on to the next image.

Device and softwareWe used a regular 8” android tablet, for
which the buttons appeared large enough to be easily clickable.
The user study being a web application, it was conducted in the

Figure 8: Several screenshots of the scribbling interface dur-
ing training phase (left), and during the study (right).

chrome browser for android. The code for this study (web client
and server), as well as the results presented here are all available
online (github.com/mpizenberg/otis).

Images We select 36 images from the iCoseg dataset [1], which
we divide into 3 groups of 12 images. We want the segmentation
results to be comparable between different interactions, but since
each user tests the three interfaces, we do not want to use the same
images for the three phases of the study. This would indeed risk
biasing the results: users might get annoyed of annotating three
times the same images and this could affect the quality of their
annotation, for example.

The iCoseg dataset provides multiple images depicting the same
object in different situations. Examples of these images can be seen
on Figure 9.

Figure 9: Some images from the iCoseg dataset

Methodology The protocol of the study is as follows.
The users are not explained the concept of segmentation, we tell

them that we require annotations on images, and that we wish to
compare three interactions to provide those annotations.

The study is composed of three steps, one step per interaction.
For each step, the evaluator first explains the user how the interac-
tion works, and demonstrates it on a training image. The evaluator
demonstrates good and bad examples of interactions. Then the user
tests the interaction on the same training image. The evaluator
can correct the user and criticize or validate the users interactions.
Once the user completely understands the tool, the eleven other
images are proposed for interaction. Finally, at the end of each step,
the user answers two questions about the interaction.
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In order to limit bias, the order of the interactions is randomized,
as well as the order of appearance of each image during each step.

Among the eleven images annotated by the user, one is con-
sidered Gold Standard. It is introduced to (i) check whether the
user is performing the task correctly (this is particularly useful in a
crowdsourcing context), and (ii) to learn the radius of the erosion
disk (see Section 3.1).

The two questions asked at the end of each step of the study are:
• Overall, I am satisfied with the ease of completing the tasks
in this scenario

• Overall, I am satisfied with the amount of time it took to
complete the tasks in this scenario

The users can answer on a scale from 1 (strongly agree) to 7 (strongly
disagree).We choose to ask only these two questions because we are
not trying to assess the usability of a whole system, but only of an
interaction. A standard usability questionnaire, such as SUS (used
in [12]), was not really adapted to our use case and instead we ex-
tracted these two questions from a popular post-task questionnaire
(ASQ, After Scenario Questionnaire).

Finally at the end of the study, we ask users to rank the three
interactions in their order of preference.

Participants Twenty users (10 Male, 10 Female) participated to
this study, with ages ranging from 25 to 55 years old. Most users
have no experience in image segmentation, and some of them are
familiar with the concept.

4.2 Usability metrics
Among the criteria stated by Nielsen [17] as defining the usability
of a system, we are able to evaluate efficiency, errors, and user
satisfaction.

Efficiency designates the swiftness with which users were able
to complete the tasks once they learned how to interact with the
system. We evaluated this criteria both subjectively, by asking users
about their perception of the time they spent on the task (table 1),
and objectively by measuring the time it took them to complete
their interactions on each image (see Figure 10).

User satisfaction is measured through our questionnaire, both
by the question on the perceived task easiness and the interaction
ranking.

Finally, errors are measured by counting the number of times the
users redrew a bounding box or an outline around the object (for
the bounding box and outline interactions), and by the number of
clicks on the Undo last scribble button in the case of the scribbling
interaction (see Figure 11).

Method Bounding box Outline Scribble

Ease 2.1 ± 0.62 2.65 ± 0.74 2.1 ± 0.61
Time 2.35 ± 0.69 2.5 ± 0.67 2.6 ± 0.70
Rank 1.95 ± 0.43 1.90 ± 0.32 2.15 ± 0.37

Table 1: Results of the questionnaire with a 95% confidence
interval

Overall, the questionnaire results can not allow us to conclude on
the superiority of one interaction method over the others. Although

Figure 10: Duration of interactions, on all images and all
users. The dots are the median durations, and the thick blue
line limits the first and third quartiles.

Figure 11: Number of errors per interaction and per user on
all images. The dots are the median number of errors, and
the thick blue line limits the first and third quartiles.

slightly in favor of the bounding box interaction, the perceived ease
and time are not statistically better for any of the three interactions.
However the results are all between 2 and 3 (on a scale from 1 to 7),
which mean users were mostly satisfied with all three interactions.
We can note that the time perception results (table 1) are correlated
with the objective duration of interaction (Figure 10), measured
during the experiments. The bounding box is obviously the quick-
est interaction, while the scribbles suffer from the time needed to
switch between foreground and background scribbling.

Surprisingly, the outline ranks first in the users preference (al-
though not significantly), ahead of the bounding box interaction.
The reason of this observation, as explained by many of the partici-
pants during the experiment, is due to to the frustration that can
arise when trying to draw a bounding box around a non-convex
object. Users who were trying to draw the bounding box as close as
possible from the object boundary often had to use several attempts,
because of the difficulty to position the first bounding box corner.
This problem is very visible on Figure 11, which shows the high
number of errors made by users when drawing the bounding box.
The errors that occurred during the outline study were mostly due
to a too high interaction speed, or to the users hand masking the
object during interaction, for users who were the less familiar with
touch devices.

4.3 Interactions informativeness
We define the background area of user inputs as follows. For a
bounding box (resp. outline), the background area is composed of
all pixels outside of the bounding box (resp. outline). For scribbles,
the background area is the union of the superpixels annotated as
background (containing part of a background scribble).

Looking at the precision of background user inputs (Figure 12) we
see that more than 75% of user annotations are perfect (a precision
score of 1). This means that 75% of user inputs do not intersect at
all the object of interest. We can conclude that users understand
well the tasks they are given.

In order to estimate the informativeness of an interaction, we
also measure the recall index (Figure 13). It indicates the percentage
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Figure 12: Precision of background user input

Figure 13: Recall of background user input

area of all background that is annotated by an interaction. With
no surprise, outlining is the more informative since it is often very
close to the boundary of the object (see Figure 18) and thus, the
outside of the outline covers most of the image. Background (red)
scribbles are the least informative here since only superpixels that
are scribbled over count as background information.

Except for the foreground (green) scribble interaction, we do not
have raw foreground annotations. We thus define the foreground
input area as the inferred foreground (through erosion or medial
axis computation, extended by superpixels as explained previously).

Figure 14: Precision of foreground user input

Figure 15: Recall of foreground user input

The precision of foreground area is given in Figure 14, relatively
to the ground truth masks. We can observe that more than 75%
of foreground (green) scribble inputs are over the 0.97 index. This
means that the task of scribbling inside the objects is globally well
performed but still slightly harder than background (red) scribbles.
It is explained by the fact that objects can have thin shapes and thus
not precisely locatable under the finger during the touch interaction.

Using the superpixels extension of the scribbles, we observe
that the smart background correction mentioned in Section 3.3, en-
hances the 75% index to a precision of 0.99.With the two foreground
inference techniques (erosion and skeleton), the improvement pro-
vided by the superpixels extension is obvious.

The recall of foreground area (Figure 15) provided by these inter-
actions, extended through superpixels is also coherent with what
we observe in Figure 4. Skeleton and scribbles recall values are al-
most 0 since they are of dimension 0/1 (points/lines) for a measure
of surfaces (dimension 2). Erosion provides the most foreground
information, but has the lower precision rate (Figure 15). We will
show in the next section that this trade-off is worth exploring.

4.4 Segmentation quality
We computed the resulting segmentation of images using five dif-
ferent methods. As a reference method, the mean Jaccard index
obtained with foreground and background scribbles is 0.79 (see
table 2). When using the bounding boxes, determining a clear back-
ground model input for the GrabCut algorithm, the mean Jaccard
increases to 0.82. As expected, it increases even more when us-
ing outlining interaction inputs, providing richer inferred initial
foreground models to the GrabCut algorithm. The higher scores
(0.88 and 0.89) are respectively obtained when using the erosion
and skeleton processing of the outline. The best performance is
achieved using the skeleton processing, which tends to show that
for the results presented in the previous section, the precision of
the foreground user input is more important than its recall.

Method Scrib. B. Box Outl. Outl. + er. Outl. + BMA

Mean
Jaccard 0.79 0.82 0.86 0.88 0.89

Table 2: Mean Jaccard index obtained on all images for all
users for each interaction

Figure 16: Jaccard index obtained on all images for all users
for each interaction type. The dot represents the median
value, and the thick blue line limits the first and third quar-
tiles.

Perhaps more importantly, the outlining interaction enables
reaching consistently higher Jaccard index than the other tech-
niques. In Figure 16, we observe that the first quartile is always
higher than 0.8 with variants of the outlining interaction. Some
final segmentation results are visible in Figure 17 and show the
clear improvement brought by an outline over a bounding box.
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Figure 17: Segmentation results for bounding box and outlining interactions from a single user.

4.5 Discussion
All the results we obtained confirm the good properties of the outlin-
ing interaction, in the perspective of being used in a segmentation
crowdsourcing campaign.

First, it is a very straightforward interaction. One of the users
explained it in these terms: outlining is easier since you do not need
to think, just trace the object. Bounding boxes are tougher, particularly
in determining a correct size, and scribbles is too much thinking and
a bit more time consuming. Another user said: It’s actually more fun
to draw around object and would seem to me less tiring than the other
methods. The usability criteria point out that outlining might be a
little less usable than drawing a bounding box, and comparable to
scribbling, but remains a very usable interaction.

Another interesting property of the outlining interaction is the
speed at which it can be performed. Figure 10 shows that most of
the outlines were produced in less than 10 seconds, which is very
reasonable considering some of the images we chose have complex
shapes (see Figure 18).

Figure 18: Outlines drawn by the third user on three images
with complex shapes.

The quantity of information brought by outlines is also very good,
as discussed in the previous section, especially when compared
with the interaction usability. This information is of course less
than a polygon drawn on the boundary of the object (such as in
LabelMe), but can be augmented using computer vision techniques
(Blum medial axis, superpixels, GrabCut, etc.) and lead to very
good segmentation masks. The average Jaccard index value of 0.89
obtained with the outlines is particularly impressive considering it
was obtained without any refinement, and in less than 10 seconds
in average (see for example the comparison with Jaccard index vs.
time curves described in [4]).

5 CONCLUSION
In this paper, we studied the outlining interaction on touch devices
for interactive segmentation. We found that outlining is a simple
and natural interaction, that allows to quickly obtain a good in-
formation on the location of an object. This information can be
augmented with foreground inference, and then used to compute a
segmentation mask. The segmentation masks obtained with this
method reach an average Jaccard index of 0.89, which is a very good
result considering the interaction does not require any knowledge
on image processing or computer vision from the user.

Because of all these good properties (simplicity, swiftness, ac-
curacy), outlining seems an interesting avenue to explore for the
gathering of large datasets of image segmentation masks. Those
datasets are crucial to bring the automatic image segmentation
algorithms, today mostly based on deep learning techniques, to a
new level of effectiveness. It is our intention to pursue this goal as
a future work and launch a crowdsourcing campaign to build such
datasets.
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